Molecular pathophysiology in Tay-Sachs and Sandhoff diseases as revealed by gene expression profiling.
نویسندگان
چکیده
Tay-Sachs and Sandhoff diseases are lysosomal storage disorders characterized by the absence of beta-hexosaminidase activity and the accumulation of GM2 ganglioside in neurons. In each disorder, a virtually identical course of neurodegeneration begins in infancy and leads to demise generally by 4-6 years of age. Through serial analysis of gene expression (SAGE), we determined gene expression profiles in cerebral cortex from a Tay-Sachs patient, a Sandhoff disease patient and a pediatric control. Examination of genes that showed altered expression in both patients revealed molecular details of the pathophysiology of the disorders relating to neuronal dysfunction and loss. A large fraction of the elevated genes in the patients could be attributed to activated macrophages/microglia and astrocytes, and included class II histocompatability antigens, the pro-inflammatory cytokine osteopontin, complement components, proteinases and inhibitors, galectins, osteonectin/SPARC, and prostaglandin D2 synthase. The results are consistent with a model of neurodegeneration that includes inflammation as a factor leading to the precipitous loss of neurons in individuals with these disorders.
منابع مشابه
Apoptotic cell death in mouse models of GM2 gangliosidosis and observations on human Tay-Sachs and Sandhoff diseases.
Tay-Sachs and Sandhoff diseases are autosomal recessive neurodegenerative diseases resulting from the inability to catabolize GM2 ganglioside by beta-hexosaminidase A (Hex A) due to mutations of the alpha subunit (Tay-Sachs disease) or beta subunit (Sandhoff disease) of Hex A. Hex B (beta beta homodimer) is also defective in Sandhoff disease. We previously developed mouse models of both disease...
متن کاملEffective gene therapy in an authentic model of Tay-Sachs-related diseases.
Tay-Sachs disease is a prototypic neurodegenerative disease. Lysosomal storage of GM2 ganglioside in Tay-Sachs and the related disorder, Sandhoff disease, is caused by deficiency of beta-hexosaminidase A, a heterodimeric protein. Tay-Sachs-related diseases (GM2 gangliosidoses) are incurable, but gene therapy has the potential for widespread correction of the underlying lysosomal defect by means...
متن کاملGene transfer corrects acute GM2 gangliosidosis--potential therapeutic contribution of perivascular enzyme flow.
The GM2 gangliosidoses are fatal lysosomal storage diseases principally affecting the brain. Absence of β-hexosaminidase A and B activities in the Sandhoff mouse causes neurological dysfunction and recapitulates the acute Tay-Sachs (TSD) and Sandhoff diseases (SD) in infants. Intracranial coinjection of recombinant adeno-associated viral vectors (rAAV), serotype 2/1, expressing human β-hexosami...
متن کاملNeuronal pentraxin 1 depletion delays neurodegeneration and extends life in Sandhoff disease mice.
GM2 gangliosidoses are a group of lysosomal storage disorders which include Sandhoff disease and Tay-Sachs disease. Dysregulation of glutamate receptors has been recently postulated in the pathology of Sandhoff disease. Glutamate receptor association with neuronal pentraxins 1 and 2, and the neuronal pentraxin receptor facilitates receptor potentiation and synaptic shaping. In this study, we ha...
متن کاملThree Novel Mutations in Iranian Patients with Tay-Sachs Disease
Background: Tay-Sachs disease (TSD), or GM2 gangliosidosis, is a lethal autosomal recessive neurodegenerative disorder, which is caused by a deficiency of beta-hexosaminidase A (HEXA), resulting in lysosomal accumulation of GM2 ganglioside. The aim of this study was to identify the TSD-causing mutations in an Iranian population. Methods: In this study, we examined 31 patients for TSD-causing m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 11 11 شماره
صفحات -
تاریخ انتشار 2002